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BOUNDARY LAYER BUILDUP IN THE DEMINERALIZATION OF SALT WATER
BY REVERSE OSMOSISl

Lawrence Dresner

ABSTRACT

The buildup of saline boundary layers adjacent to permselective
membranes has been studied. Two situations have been considered. In the
first, water is forced by a piston through a semipermeable membrane; there
is no lateral Tflow of the water over the face of the membrane. The salt
concentration at the surface of the membrane increases monotonically with
time and is asymptotically linear in the time. In the second situation,
the pressurized feed solution flows continuously through a channel whose
walls are made of the semipermeable membrane. The flow may be either
laminar or turbulent. In the laminar case, formulas Tor the salt concen-
tration at the wall in both the asymptotic region ("well-developed" con-
centration profile) and the entrance region (boundary-layer region) have
been derived. In the turbulent case, a simple formula for the salt con-

centration at the wall has been derived from the Chilton-~Colburn analogy.

(1) Work performed for the Office of Saline Water, U. S. Department of the
Interior, at the Oak Ridge National ILaboratory, Oak Ridge, Tennessee
operated by the Union Carbide Corporation for the U. S. Atomic Energy
Commission.
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Introduction

Salt water can be purified by pumping it under pressure through a

>
[4 . .
membrane more permeable to water than to salt. Most promising among the

(2) C. E. Reid and E. J. Breton, J. App. Polymer Sci. 1 133 (1959).

materials from which semipermeable membranes can be prepared is cellulose

Y
acetate,5 but other organic polymers can also serve. When water is being

©

(3) C. BE. Reid and E. J. Breton, op. cit.; "Sea Water Demineralization by
Means of a Semipermeable Membrane," 5. Loeb and S. Sourirajan, UCLA
Report No. 60-60, July, 1960.

(k) C. B. Reid and E. J. Breton, op. cit.; S. Loeb and S. Sourirajan, "Sea
Water Demineralization by Means of an Osmotic Membrane," Advances in
Chemistry Series #38, Amer. Chem. Soc., 1963, p. 117.

pumped through such a membrane, the salt it keeps back concentrates in a
highly saline boundary layer lmmediately adjacent to the membrane surface.
Buildup of such a boundary layer has several serious consequences: 1t
raises the local osmotic pressure of the water and so decreases the driv-
ing force available for reverse osmeosis, 1t increases the salt content of
the water coming through the membrane, and it may cause the precipitation
of relatively insoluble scale-forming salts.

The bulldup of a salt-rich layer along side the membrane has been
termed the "concentration polarization" of the membrane by K. A. Kraus.
This paper is devoted to estimating the extent of concentration polariza-
tlon in two simple prototype desalting cells.

The simplest imaginable batch-operated cell is Jjust a cylinder closed
by the semipermeable membrane at one end and a piston at the other. The
simplest imaginable continuously operated cell is a channel of some sort

whose walls are made of the semipermeable membrane (backed by a suitable



supporting material) and which contains the pressurized feed solution.
In this second cell, fresh feed solution flows continuocusly through the
channel; this flow may be either laminar or turbulent.

Owing to its penetration of the chaunnel walls, the water has an
average ''radial” component of velocity that is ordinarily absent in
laminar channel flow. Furthermore, the velocity profile of the axial

flow is affected by the "radial' motion of the water. Bermanb has

(5) A. S. Berman, Proceedings of the Second International Conference at
Geneva on the Peaceful Uses of Atomic Energy 4 351 (1958). This paper
contains references to earlier work.

solved the problem of fully developed laminar channel flow with both fluid
injection and removal at the channel wall for rectangular, cylindrical,

and annular channels. Using his radial and axial fluid velocity profiles,

EE ]

we shall‘célculé£é the radial and axial concentration profiles of the salt
in the channel.

When the channel flow is turbulent, nothing is known of the effect of
fluid removal at the wall on the Tluid velocity distribution, and we shall
erforce neglect this effect in calculating the concentration profile of

the salt,

Batch-Operated Cell

If the radius and length of tThe cylindrical batch-operated cell are
large enough, the problem of calculating the axial concentration profile
becomes the problem of an infinite mass of fluld moving uniformly against
a plane, semipermeable interface. The geometry is shown in Fig. 1.

The differential equation governing diffusion in a moving fluid is
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1

Fig. 1. The Idealized Geometry of the Batch~Operated Cell.




%% + vegrad Cc = lifvgc

In the geometry of Fig. 1, this simplifies to
o, _@’éfe
ot °dx T 2

We must solve Eq. (2) subject to the boundary conditions

C(X,O) = CO

vy c(o,t) + jﬁf< g;~> = 0

bg. (5b) says that the net current of salt across the membrane at x

is zero.

(1)

(2)

(32)

(3p)

=0

For simplicity, let us introduce the following dimensionless vari-

ables:

T o= S - %o ..

L
2 e
U
o]
el

v

=]
Il

Tn terms of these variables (2) and (3) become

@i; Lor _ar

ag? 3 T ST
Ve
ar> iy
< + 'o,t) = -1
% ),

Te=T
F(E:O) =0



Henceforth, the variable I' will be called the concentration polarization.
Interestingly, the system of equations (5) has no steady-state
solution: the salt concentration at the membrane rises monotonically with
time. Asymptotically, i.e., for large 7, I' varies linearly with 7. To
show this, let us begin by integrating (5a) over all &. Using (5b), we

find the result

o

[ e, ae -a (62)
0

or its equivalent
~
[ orte) e <o (6b)

o
No constant of integration appears in (6b) because I' vanishes when
7 = 0 (Eg. 5¢c).

For large 7, we might expect the salt concentration profile to
assume a congtant shape and only change in magnitude. This consideration
suggests we try a solutlon of the type Tzz‘l(é) + 3§2(g), where =, and
=, are as yet undetermined functions. I we substitute this form into

(52), (5b), and (6b) and equate the coefficients of like powers of T, we

find
= (8) () =0 (7a)
=,(0) + =,(0) =0 (7b)
= - (1)
0

(8) + T,(6) = =, (¢) (7a)



From the Tirst three of these eguations we see that E:l(g) = e and
from the last three that 5{é(g) = <1_§)e~g. Thus
ro (1) = (e 11 - g) (8)
as >’
is the asymptotic solution of Egs. (5a) and (5b). The concentration
polarization at the membrane I'(o,1), which is the main quantity of
interest here, is therefore asymptotic to T + 1.
In the problem presently being dealt with, we can also calculate
the nonasymptotic (transient) behavior of the concentration polarization

at the membrane explicitly. If we define Ftr(g,r) by

ro(e,1) = r(E,0) - e (el - g) (9)

we ind by substituting it into Egs. (5) that it satisfies the equation

2 _
o°r or, or
gtr + b _ tr (10a)
OF Ot O
3. N -
<- b ) + 1, (0,7) =0 (10b)
% 780

r(8,0) = (5-1)e™ (100)



We shall solve Egs. (10) with the help of the laplace transform.  If

[vo}

- -T5
T, (6,8) = G/ r,(6,7) at (1)

(6) Cf. e.g., "Operational Methods in Applied Mathematics,” H. S. Carslaw
and J. C. Jaeger, Oxford Univ. Press, London, 1948, pp. 1

then ftr satisfies the equation

afF._(t&,s) ar, (&,s)
tr=? tr”? - ,
5 + =5 I (&,8) - (&-1)e (12a)
at at
dar
tr =
< = o
<d§ >§ -0 + Ftr(o)d) 0 (lz_.b)
S=8
the substitution
- +£ /2
W(e,s) = I (&,8)e 2/ (13)
reduces Egs. (12) to
o
a“ Iy -t /2
Losad) v = (e - 1)e®/ (1ha)
ag

7
(££'> + 2 y(0,8) = 0 (14p)
AdEe 2
o §::O
S=5

Now suppose that Wl(g,s) and Wg(g,s) are two linearly independent

solutions of the homogeneous equation corresponding to (lha), Viz.,

2

d 1

SL-(s+pw =0 (15)
ae”

Furthermore, let ¥, satisfy the boundary condition (14b) and let ¥, be

regular at infinity. ©Since the Wronskian of these two solutions is a



constant, the Green's function of (15) is
Vo (E<) v (8s)
Gle,8") = —— - (16)
¥3(0) ¥,(0) = w,(0) 1,(0)

&5 1s the larger of § and &', and

where - is the smaller of € and &'
the primes on the Y's denote differentiation with respect to &
H. Margenau and G. M
10ks, p. 516 ff.

(7) "The Mathematics of Physics and Chemistry,
Murphy, D. Van Nostrand Co., Inc., New York

Furthermore,
v, (8")
G(o,e") = (17)
¥y(0) + 5 ¥y(o)
2 2 2
Here we have made use of the fact that ¥, satisfies Eq. (1kb). From (17)
it follows that
o
P v, (&)
- 2 -t /2
r..(0,8) =¥(0,s) / \ (£-1) &8/ g (18)
5 wyle) + 1u,(0)
- 2
ftr(o s) is the Taplace transform of I (o,u), the concentration polari-
zation at the membrane.
_g/”ff?f’
Tt is clear from Eq. (15) that v [ . Substituting
this equation into (18) and carrying out the integral we obtain
= ) 1
Ftr(o,s) = - =T (19)
Ws +1 "+ %
I 2
Inversion of this Iaplace transform8 now gives
(o,1) = - §~v Jf ds (20
r ’ /S + l 1)2 )
~leo =

(8) H. S. Carslaw and J. C. Jaeger, op. cit., pp. 71-77




The only singularity of the integrand 1s a branch polnt at s = ~1/M. It
we deform the path of integration to the dotted path shown in Fig. 2,

We can express Ptr(o’T) as

j

o0
., _ 1 BT \
Itr(o,T) - = Jf s e ds (21a)
1
I

[al)
A
4

i

3 -
i )—T/u - y T/u (qlb)
“"T[ a (o8
)
where y2 =hs - 1. The right-hand side of Eq. (21b) can be evaluated in
terms of the complementary error function:

~ T/

tr(o,T) = - (1 + 1/2) erfe (/1/2) +»Vg/;AJe / (22a)

I

where
2 ' ~U2
erfe(x) = = /ﬁ e~ du (22b)
/ey

I'(o,7) is shown in Fig. 3.

Continuously Operated Cell; laminar Flow

The geometry of the continuously operated cell is shown in Fig. L,
The main flow is in the x~direction. The width and length of the channel
are presumed to be very much larger than the channel thickness, 2. A
steady state solution of Eq. (1) exists and it is this solution that we
now seek.

In laminar channel flow, Bg. (1) becomes

J 2
de >
u 5%{- + v %‘ = f(.ﬁ Q“"% (25)

Sy
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1
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Fig. 2. 'The Original (Solid) and Deformed (Dotted) Paths of Integra-
tion in the Complex s~Plane. The integrand in Eq. (20) has a branch point

at s = w1/4; the s=-plane hag conseguently been cut along the negative real
axls from s = w1/4 0 8§ = ~ oo,
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Fig. 3. The Concentration Polarizatlon ' at the Membrane in the
Batch=Operated Cell. T 1s the ratio of the excess salt concentretion
at the membrane to the initial concentration [cf. Eq. (4a)l, v, is the
constant fluid velocity (cf. Flg. 1), t is the time, and ¥ is the dif-
fusivity of the salt (cm®/sec).
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Fig. b,

The Geometry of the Contlnuously Operated Cell.
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2 2 . . .
The term in Kfiafc/ax has been neglected since axial convection of salt,
which is described by the term u éc/ax, far outwelghs axial conduction,which

O
is described by the omitted term.)

(9) A similar approximation is made in the classical Graetz-Nusselt
problem; cf. "Heat Transfer,” Vel. I, M. Jakob, John Wiley and Sons,
New York, 1949, p. L51,

According to Berman,5 the velocity components u and v are given by
u = [u - (wa/ﬂ)] () (2ha)
v =v_f(N) (2hb)

where £(\) is a function that has been calculated by Bermzn. The form of
these functions suggests that we may be able to solve (23) by the method
of separation variables. If we set c(x,y) = X(x)Y¥(y), we find that (23)

can be written

1
o@jy”_vy’_uy<..ll..§;._ = 0 (
O u

= 25)
o)
The factor in parentheses in the last term in (25) depends only on X,
while all the other terms in (25) depend only on y. Thus
v g v
™ oe vy ey Y =0 (26a.)
- 0
u £
o)
and
v
1 X' W -
ol e (26b)

where, for convenlence, the separation constant has been written in the
V.o
form .
u_£
o]




The solution of REq. (26b) (arbitrarily normalized to the value unity
at x = 0) is
v X h
X < e (27)
u £
0
The admissible values of ¢ are the eigenvalues of Fg. (26a) subject to ‘the

conditions
Y'(o) =0 (28a)
va(z) - affg'(z) = 0 (28p)

Eq. (282) is a symmetry requirement; Eq. (28b) states the impenetrability
of the channel walls to the salt. TIf for the sake of convenience, we

write Egs. (26a), (28a), and (28b) in terms of the variable A = y/2, we

find
Y - af(A)Y' - aof'(N)Y = 0 (20a)
Y'(o) =0 (29b)
oy(1l) - y'(1) =0 (29¢)

where the primes now denobe differentiation with respect to A. O = vwz/Kﬁj
is the Péclet number for mass transfer and is equal to the product of the
transverse Reynolds number Rw = Vwﬂ/v and the Schmidt number SC = Vﬁfﬂ

The substitution A

Y(A) = Y(N) exp Q{é f<x')dk'> (30)

leads to a Sturmm-Liouville equation Tor V(x):10

(10) #. Margenau and G. M. Murphy, op. cit., pp. 253-267.
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v orar(MV ol - o) AV =0 (312)

V(o) =Vv'(1) =0 (31b)
Here we have used the fact that £(1) = 1 and f£(o) = 0. The well-known

s . 10 ; . ; , .
variational principle for the elgenvaiues o now takes the form

fexp< -osz(x dx>v'2 A
f £1{N) exp <—oc f AT d')\'> v

We can see gimply that the elgeaoolutlon V = 1 satisfies (31a) and

[
l
QIH
o
P
~—

(31b) with the eigenvalue o = 1. The corresponding value of Y is

exp (Q k/—f(7\') d%') . Bq.(32) indicates that ¢ = 1 is the largest
o
of the eigenvalues. Eq. (27) shows that it is the o = 1 eigensolution

which dominates asymptotically for large x. Thus when the concentration

profile is fully developed, 1t is described by

A \
exp (é kff(?\')d?\') .

As an index of the concentration polarization at the membrane we

shall take the ratio of the excess wall concentration to the local cup-

mixing concentration:



1

P

v(1) /| uln) ax
O/
I' = 5 - 1 = -1 = T -1
\jpu(A)Y(%)d% /\
o s

/ﬁf'(x)l[-(—ﬁ)w an

J

£{A)Y(N)axn

0
<

N
l__]

o

(33)

This 1s a particularly useful quantity, since if little water is drawn of'f,
the local cup-mixing concentration will differ little from the bulk feed-
water concentration.

Cellulose acetate membranes generally permit flow velocities of the
order of 5 x 10")'P em sec™t ~ 10 gals/ftg/day with pressures of the order
of 100 atm. With such small velocities the transverse Reynolds number Rw
is << 1 for reasonable channel thicknesses. When Rw << 1, Berman5 has
shown that the Polsseuille profile is a very accurate representation

of the longitudinal flow and henceforth we shall always use 1t. Thus

£1(A) = 2(1-27) and

J[ %(l—kg) exp [-¢ (% - % 7\2 . % Ku)] o

Wnen @ >> 1, this integral is easy to evaluate. I then becomes approxi-
mately %-ag. I is plotted as a function of &« in Fig. 5.

x/f can never exceed ﬁo/vw, for in principle when x = x, = ﬁoﬂ/vw all
the water has been drawn off through the channel walls. The speed with
which the ¢ = 1 mode dominates the concentration profile can be charac-

terized by the ratioc of the value of x at which the higher modes have

fallen to some gpecified fraction of their initial intensity to the value
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20
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Fig. 5. The Asymptotlc Concentration Polarization T' at the Wall in
the Continuously Operated Cell. T is the ratio of the excess wall concen~
tratlion to the local cup-mixing concentration [cf. Egs. (33) and (34)1;
and @ 1s the Péclet number for mass transfer, defined by v £/AY , where
v, is the fluld suction velocity at the wall, £ is the hal¥-thickness of
the channel (cf. Fig. 4), and XY 1s the diffusivity of the salt (cm®/sec).
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X, wWhen o 1s large and negative, it is easy to show that any mode will
fall to 1% of its initial intensity when x/x, = 4.6/|c|. In fact as long
as x/xOO << 1, the modes decay exponentially with l/IGj as the decay con-
stants. If any eigenvalue is not large and negative, the corresponding
mode will decay slowly, and the o = 1 mode will not dominate the solution
untll x is very close TO Xge

Table 1 shows the first few eigenvalues of Egs. (31) for several

values of .

Table 1. Eigenvalues 1-¢ of Egs. (31) for o = 1, 3, and 10

(04

n e 1 3 10
1 11466 3.4529 1.1331
2 Wi 905 1h e b.53153
3 99. 76k 32.6k7 9.8595

Tt is clear from these results, that when @ < 1 the ground {o=1) mode will
dominate over most of the range of x, whersas when & > 10 the asymptotic

a1

state 1s not reached until X nearly equals Xex. Thus when & >> 1, the

Ve
-y

N
asymptotic solution exp ka/ £(A") dk') for the concentration profile 1s
of no practical use. In order to get an expression for the concentration
profile valid for smz2ll x, let us consider the following situation. A
salt solution flows through a channel which sucks liquid tarough its wall
with a velocity Ve The entrance length of the channel, lying at values
of x < 0, is long enough to allow the velocity distribution (24) to be

established. Throughout its entrance length the channel Is equally

prermeable to water and salt, so thall for x < O the concentration profile
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iz flat. At x = O the wall of the channel becomes impervious to salt.
A thin salt-rich boundary layer begins to build up as the fluid passes
the point x = 0. When X/Z << ﬁo/vw, the concentration profile in this
boundary layer is governed by the equation

~

. 3 2
uof'(7\) -5}% + vwf(7\) %3 _d—i—-y%

Since the boundary layer is confined to a thin reglon very close to the
wall, A~ 1 and £'(7) and f(A) may be replaced by the leading terms in
their regpective power series expansions around A = 1, viz., 3(1-A) and
1 when RW << 1.

If we now introduce the dimensionless variables

I'=— - (36a)
o
2 v
t = (36b)
o
= a(l-2) (36¢)
(35) takes the form
2
a I' -,
”a‘% * %ﬁ‘“ = glg (37a)
1
The boundary conditions are
<%>@‘*“QQ:4 (37b)
£=C

r(n,0) =0 (37¢)
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e can Tind the asymptotlc solution of Egs. (37) exactly as we

found the asymptotic solution of Egs. (5). The result is

r(,t) = eNE +5 - - 07/R) (582)

so that

r (0,8) =¢ +5. (380)

Again defining rtr(n,g) = I'(n,t) - ras(n,g), we find that I satisfies

the cquations

oI, or or
or tr tr (598.)
on o ot
or, N\
Bﬁky)qzo + Ptr(o’g) =0 (39b)
€=t
P, (n,0)= -5 - 0 - 7°/2) (392)

We proceed now exactly as we did before. First we ILaplace transform Hgs.
(39a) and (39b) with respect to ¢; then we make the substitution (13)
(with ¢ written for £). The result of these manipulations is that

) Yo () -n/2
Faloss) = | o (s <y - iPfe) an (ko)

Ll (nsp) ¥ =0 (41)

that is regular at infinity.
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Owing to the presence of the factor f multiplying s in (41), ¥,
cannot now be expressed in terms of simple exponentials: we: can verify by

substitution that

J 17
WE(T]) = A8N + g 1/5 <§ [sn + )Jj] ) (k2)
where Kl/5 is the modified Besgel function of the second kind of order

one—third}l A short calculation then shows that>

¥a(o) 45 ¥p(o) - H 5/5%> - K°/)<Té‘")] (43)

s0 that finally

o0 5/2\
_n/g 1 Ll*/r], +E- ( 18 ] )1
1
tlont) == [ e e n® < sy o] BN
O ) K. 1 A
%13 1a< / i U)
(1)
where de denotes the inverse lLaplace transform. According to the in-

version theorem

(11) "Bessel Functions,”" G. N. Watson, Cambridge University Press, The
Macmillan Co., New York, 19kh.
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The explicit inversion of the transform in (L45) is well-nigh impossible
and to obtain a useful approximation +to Ftr(o,g) we must proceed obliquely

as follows. The analysis of Appendix 1 shows that when £ >> 1 the right-

S .
hand side of (45) is asymptotic to —emyég/j if (hn)2 << 6 and to e-:}/g/j

if (Mn)2 >> 6¢. These facts suggest that a function of the Lype e~'"C;a

might adequately represent the asymptotic behavior of Ptr(o,g). Such a
function has the additional virtue of having an infinite derivative at

= 0, which the analysis of Appendix 2 indicates T e} mist have. Hence
3 Y P >

tr(
ve may tentaltively set )

r(o,t) = -5c775/8 (15)
The value 5 has been chosen for normalization [Ftr(o,o) = -5]. The extent
to which (46) adequately represents Ptr(o,g) may be determined by seeing

[ee]

(0,t). We can

.
k
how well it reproduces the momentsk/ ¢ Ftr(o,g) a¢ of T
o

calculate these moments from the Laplace transform (44).12 The first three

(12) The Taplace transform is the generating fuunction of the moments, i.e.,
= ko
T, (o,s) = > (-5) L/ gk r. (o,t) at [cf. Carslaw and Jaeger, op. cit.,
tr A k! tr
k=0 *©

p. 257, Bg. (1)]. Thus if we expand the Iaplace transform (44) in powers

[ore]

off 8, we can obtain the various moments of Ftr(o,g) by inspection. Calcu-

lating the terms in this series is a tedious job, and a slightly simpler

recursive method of calculating the moments can be based on the observa-
(22
. L [ ¢k . :
tion that the quantities Ak(ﬁ) =/ % Ftr(q,g) dt satisfy the equations
o]

Ag(m) + Al(n) = -l (n,0)
Al(n) + A (n) = -na o (n) (k> 1)
Aﬁ(o) + Ak{o) = 0

ank(”n) dn

0

Il

These equations can be golved successively Tor A LA etc.
J o2
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moments are -35, -630, and -32690, respectively. Choosing a = 3 makes
the first three moments of (L6) -30, -540, and -32k00, respectively, in

comparatively good agreement with the actual moments. Thus

P (o) ~€ 45 - 50V (46)

This function is plotted in Fig. 6.

Continuously Operated Cell; Turbulent Flow

If the axial flow in the channel representing the continuously
operated cell is turbulent, the salt concentration at the wall is related

to the bulk salt concentration by the following equation:

Ve, = h(cw - CO) (%7)
so that
v T % Y
o rv—————— 22— )
r Co h (LB)

There are a number of semi-empirical expressions relating the mass transfer

coefficient to the characteristics of the fluld and the flow pattern; the

15

one we shall use here ig that of Chilton and Colburn™ expressing the

gses," T. K. Sherwood,
s, Vol. 55, No. 25,
1

(13) "Mass, Heat, and Momentum Transfer Between Pha
e85,
959. Cf. also reference

Chemical Engineering Progress Symposium Seri
Reactor Kinetics and Unit Operationsz, p. T1,
14, pp. 4OL and 647.

Stanton number in terms of the Schmidt number and the Fanning friction

factor:l

(14) "Transport Phenomena,” R. B. Bird, W. E. Stewart, and E. N. Lightfoot,
John Wiley and Sons, New York, 1962, pp. 181-188.
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UNCLASSIFIED
ORNL DWG 63-7186

Fig. 6. The Concentration Polarization I’ at the Wall in the Entrance
Region of the Continuously Operated Cell. I' is the ratio of the excess
wall concentration to the local cup-mixing concentration [ef. Bg. (36a)];
and @ is the Pdclet number Tor mess transfer, defined by v EA{}j where
vy 1s the fluld suction velocity at the wall, £ 1s the nal¥-thickness of
the channel (cf. Fig. 4), and £7 is the diffusivity of the salt (cm®/sec).
x is the distance down the channel (cf. Fig. M), and EO is the bulk fluid
veloclty in the x~direction.
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For smoobh-walled channels, the friction factor is given by Blasius'

equation:

-1/4
f = 0.08 (Re) / (50)

Combining Egs. (48), (49), and (50) we have

) 1/h 2/3
r=e5 (v /i) (Re)  (Sc) , (51)



APPENDIX 1
The study of the asymptotic behavior of Ftr(o,g) using the contour

integral given in Eq. (45) will require the use of the following properties

of the Bessel functions, all of which can either be found in Watson's book11

or caslily deduced from formulas given there.

) % Kl/S(r) -t (gKl/S(r) i “Il/S(T)J (1-1)

!

in 1 e ]
ACE S R VACEE IgKg/q(r) sl (e) | (1-2)

L (2)re e s T (2) OV ——~7€ (1-7)
1/3 (21(2)3’ 2 2/3 (27(2)1 2

T, (e) -1, (1) -l = (1-8)
/3 2/3 (QHZ)I/é 6z

. 1/a

Hn g eelE L 20 (1-9)

e r (3
im 1/
i;{)vgﬁ Ki/3(23/2) - N (1-10)



atT the point s = = l/,;r.. I7 we cut the s-plane from o to » along the nezative

The integrand in (45) has two branch points, oue at the origin and the other
real axis, the path of integration may be deformed to a path similar o that shown in Fig. 2, bui enclosing the entire negative real axis.

Then

-in N\ /=iy

/

K, =
1/3 \ 125}

- o dx2 2eM2 TR
;o A S = B
17 2/ 5is! & / Cls o ey xS}
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41 - e 4 {e :
h/ L vmmymr i =K ) )
1fa \12{si/ ~a2/z \1Zisl/
Ir both of these intesrals the two terms in the Lrackets are complex conjugates of cue ancther (ef. Egs. {1-3) and (i-3). Taus replacing s by -s for convenience
we can write
o
075 s (z-12)
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When £ >> 1, the main contributlion to the Tirst integral comes from
\ . 1 .
very small values of s. If 8 1s very small,ig:-/> 1, and we can replace
o]
the various Bessel functions by their asymptotic values, If we keep only

the leading terms in both numerator and denomlnator, we find that the first

integrand is simply

1 1 1 1
. )+ K —_— e )
-Cs Kl/B <128> I2/3 <125> N 2/a < 125) Il/s <128) e-(CS + 1/63)

Lt 82

[11/3 @ > "o/ %) J (1-14)

g0 that the first integral can be written

e

I

- *}_./ﬁ o-(6s + 1/6s) as (1-15)

-
2

o}

Ir 66 >> (bn)2, we can evaluate this integral by the method of steepest

descents. If we set s = (65;)—1/2 + ¢ then

ts + —%: = /56751 + Ao 2+ .. (1-16)

so that the first integral finally becomes

4o

s —/éé/g T - 2 €3
¢ [e—wag = Sl /28 />

N

o

7|

A

- 61/4\/ﬁ'
(1-17)

swhich beczuse of the condition

-t fhn

The second integral is of the order of e
, - . /ot 3 _
(6¢)>> (4n)® is << e 77>/, Hence for not-too-large 71, Eq. (1-17) represents
e A
the asymptotlc behavior ofckifl {f"} .
It (bn)® >> 6t, on the other hand, the first integral can no longer

be evaluated by steepest descents. However, under the glven condition,
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s is << 1/68, so that the first integral jusl becomes

1
o2
L T Bs ds 3 -on/3
T 2n € Pr-E (1-18)
O

Since 1/4n << 1, the main contribution to the second integral comes from

small values of s and 1t can be written approximately as

ds

4 7 4 5 1 3/2>
o , P I G U
BEN IS \ o PRI I C S
T

- IVCORVES)

o (i)]/?
~ 1 U bs-1/12s - /g ds = mm;; - -1/ Q‘/§75)
sole mmr (5) 8 25
- O-STMB g‘l/ﬁ e-pC/Bw (1—19)

where the integral has again been evaluated by the method of steepest
descents. This last expression is >> the right-hand side of (1-18)

since (Ln)Z >>6L.
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APPENDIX 2

In this appendix we shall investigate the behavior of I'(n,{) near

¢ = 0. Let us look for a solution of Egs. (37) of the form

FM&):MQG<—§> (2-1)

Substituting (2-1) into (37a) we find after some simple algebra

G"(w) 2 n oy G'(w) LT
W——(—yc;w*(s*a"’)e‘mlw I (2-2)

where w = -112/9t. Since 7 and { are independent variables, we must clearly

2

have F(C) = Q—K and

[»)
WG (w) + (% - W o+ %) G'(w) -ka(w) =0 (2-%)
When ¢ << 1, the term n/} in the parenthesls in the second term of (2-3)

can be neglected, for when 7 <K 1, n/} << 2/5, and when 1 >> 1, n/B <L lw]

= n3/9§. Thus G is given by the ordinary differential equation

WG () +,(§ “w) &' (w) -k G(w) = O (2-4)

Eg. (2-4) is the confluent hypergecmetric equation and has as its solution

_ . 2 1/a 10k :
G(w) = a lbl(K,B,w) ta_ v 1F1(K 5 5,w) (2-5)

. 1, . . ].
where F 1s Pochhammer's confluent hypergecmetric function, 2 and a, and
11

a2 are constants. Thus

-K

_N

r(n,t) =¢ [ F /K e 3 égn R S > |
a5 = %11 JL 732 7 9t ) B (9@)1;3 11\ T3 5 T gF

(2-6)

(15) "Methods of Theoretical Physics,” P. M. Morse and H. Feshbach,
McGraw-Hill Book Co., New York, 1953, pp. 604-606.
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Tt follows from Eq. (2-6) that

D(o,t) =ag t™ (2-7a)
or > _ o K iy
& 2=g S e (9g)E (2-7b)

When ¢ << 1, the boundary condition (37b) will be nearly satisfied if

K = ~ and a, :,</§7. Thus when £ << 1,

1

5
—_— 12

F(T])g) = az gl/u lFl<“ 3 '3") - -1 (2"‘8)

The constant a, can be determined from the requirement that I'(1,t)

. o . . 12
vanish for large 1. The confluent hypergeometric function 1¥;(-%, g,w) has

16

the integral representation

(16) P. M. Morse and H. Feshbach, ibid, p. 6O08.

" In
1/3 r(%) T3
F e r@en’ e n e [ (i) 7
11 3 7 W
F<"g)
(2-9a)
so that if n > 1,
2
(12 n3> L——~7~l 1 12/9¢
Fl-z 5 - =% + - -G
1 1<.5’ . 9 ™~ (or)1/s ofe ) (2-0b)

/

38—/ o
Using (2-9b) in (2-8) we find that a, must equa1/¢9//F(3) = 1.5%6.
/

/
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Notation

= a constant defined in the text following Eq. (4%).

arbitrary constants defined in Eq. (2-5) of Appendix 2.

salt concentration at the membrane (moles/liter).

initial concentration in the batch-operated cell or feed concen-

tration in the

continuously operated cell (moles/liter).

salt concentration at the membrane (moles/liter).

salt diffusivity (em®/sec).

Berman's funct
functions intr
Pochhammer's ¢

A

mass transfer

modified Bessel function of the second kind of order one-third

(ef. Ref. 11).

ion (cf. Ref. 5).
oduced in Eg. (2-1).

onfluent hypergeometric function (ef. Ref. 1k4).

coefficient (cm/sec).

channel half-thickness (cm).

transverse Reynolds number = vwﬂ/v.

Taplace transform variable.

Schmidt number

- Stanton number

time (sec).
x-component of
u(x=c) (em/sec

average of u

fluid velocity
y~component of
constant fluid
Wy =+ £) (em
a function def

cartesian coor

uoﬂ/vw.

= v/

fluid velocity (cm/sec).

).

over the channel cross section (em/sec).

vector (em/sec).

the fluid velocity (cm/sec).

velocity in the batch-operated cell (cm/sec).

/sec).

ined in Fg. (30).

dinates (cm).

functions defined in the text following Eq. (24).

-n°/9¢.
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tr

1> 2

o}

T

o,
1
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Péclet number for mass transfer = vwﬂ/Kﬁ{

a positive constant.

the gamma function.

concentration polarization [ef Eqs. (4a), (33), (36a), and
(48).]

asymptotic part of I' [ef. BEgs. (8) and (38).]

- transient part of [' [cf. Egs. (9) and the text following Eg.

(38).1
Laplace transform Ptr'

an auxiliary guantity introduced in the text preceding Eq.

(1-16).

5 -
= O vwx/Buoﬂ.

1 -A=1-y/2.

a number defined in the text following Eq. (2-2).

v/

kinematic viscosity (cm®/sec).

vl

functions defined in the text following Eq. (6b).

eigenvalue of Egs. (31).

- w2

a function defined in Eq. (13).

- functions defined in the text following Egs. (14); cf. also

Egs. (L0O) ana (41).
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